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By introducing a feedback control to a classic DLE system (diffusionless Lorenz equations), an extremely complex 

hyperchaotic attractor with no equilibria is derived. Based on adaptive control and Lyapunov stability theory, we design a 

reduced-order projective synchronization scheme for synchronizing the hyperchaotic DLE coexist with no equilibria and the 

3-D chaotic Wang-Chen system coexist with one stable equilibrium, which both do not meet the Sil’nikov criteria. Finally, 

numerical simulations are given to illustrate the effectiveness of the proposed synchronization scheme, and then its circuit 

implementation is included as real applications. 
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1. Introduction 

 

It is concerned with the classification and 

determination of the type of chaos observed 

experimentally, proved analytically, or tested numerically 

in theory and practice. However, Sil’nikov criteria is 

sufficient but certainly not necessary for emergence of 

chaos. 

In 2010, Yang, Wei and Chen [1] introduced and 

analyzed a new 3-D chaotic system (called generalized 

DLE system), in a form very similar to the Lorenz, Chen, 

Lü and Yang-Chen system [2], but it has only two stable 

node-foci. Recently, Wei and Yang introduced a 

generalized Sprott C system with six terms by using 

linear feedback and found that the the control parameter 

can made the generalized Sprott C system to generate 

chaotic attractors existing with two stable equilibria 

[3].Moreover, Research results on related problems can 

be shown in [4-12]. 

In 2011, Wang and Chen discovered a simple 3-D 

autonomous quadratic system that has only one stable 

equilibrium [13], revealing some new mysterious 

features of chaos. Later, Wei made the Sprott D system to 

preserve its chaotic dynamics by a tiny perturbation, and 

demonstrated that the perturbed Sprott D system with no 

equilibria has the cascade of period doubling bifurcations 

and chaotic attractors [14]. 

On the other hand, hyperchaos characterized with 

more than one positive Lyapunov exponent, has attracted 

increasing attention from various scientific and 

engineering communities, and was first reported by 

Rossler in 1979 [15]. It might be due to the fact that the 

hyperchaotic systems are more complex and chaos 

generation in 4D autonomous systems is more difficult 

than chaotic systems [16-20]. Generating a hyperchaotic 

attractor, in particular purposefully designing a hyper- 

chaotic system from an originally chaotic system with only 

two stable node-foci by some simple feedback control 

techniques, is a very attractive and yet technically quite 

challenging task theoretically. It has wide foreground, 

important theoretical and practical meanings to carry this 

research further. In addition, in spite of the natural 

curiosity and extreme efforts about generation of a three 

and four autonomous system with different multi-scroll 

chaotic attractors, there is no report about the result that 

the coexistence of hyperchaotic attractor and another 

attractor in the 4-D autonomous system with no equilibria. 

In the recent years, many various schemes have been 

applied for chaos synchronization, for example, complete 

synchronization [21], anti-synchronization[22], phase 

synchronization [23], generalized synchronization [24], etc. 

However, in these synchronization schemes the drive 

system and the response system always have same order. 

Now the synchronization of chaotic systems with different 
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order has received less attention [25-27]. In fact, the 

synchronization phenomena of chaotic systems with 

different order are the more common form. In the case of 

thalamic neurons, for instance, such a problem is 

reasonable if their order is different from the one of the 

hippocampal neurons [27]. 

 Inspired by the above ideas, a new hyperchaotic 

system without equilibria form the generalized DLE 

system is proposed and analyzed in this paper. We also 

will design asynchronization scheme to realize projective 

synchronization between the hyperchaotic DLE coexist 

with no equilibria and the 3-D chaotic Wang-Chen 

system coexist with one stable equilibrium, which both 

do not meet the Sil’nikov criteria. Numerical simulations 

are presented to demonstrate the effectiveness of the 

proposed adaptive controllers. In order to realize of the 

new hyperchaotic circuit, a microcontroller based circuit 

has to be designed to applying the initial condition 

voltages to the capacitors. 

 

 

2. The hyperchaotic DLE with no equilibria 

 

The generalized DLE is described by the following 

equations: 

 

1 1 1

1 1 1 1

1 1 1

( )

,

x a y x

y x z cy

z b x y

 


  
   

           (2.1) 

 

where , ,a b c are real parameters. When 0b  and 0a  , 

the model (2.1) has the following two fixed points: 

 

1( , , )E b b c , 2 ( , , )E b b c   . 

In addition, the divergence of the system is a c   which 

implies that the system is dissipative for 0a c  , since 

the volume of the system contracts according to the 

Liouville formula. It is easy to show that the system (2.1) 

is topologically equivalent to the original DLE[28].For 

parameter values ( , , ) (10,100,11.2)a b c  , which yields a 

typical chaotic attractor(see Fig. 1), three characteristic 

values of the Jacobian of its linearized system evaluated at 

the equilibria are: 

1 -20.9778  , 2,3 0.1111  9.7635i    . 

Clearly, system (2.1) has a chaotic attractor coexisting 

with two stable node-foci. This implies that system (5) 

with (a, b, c) = (10, 100, 11.2) has neither homoclinic nor 

heteroclinic orbits, and hence it has a chaotic attractor 

without any Sil’nikov orbits. 

Now, by introducing an additional state 
1

w  and 

couple it to the second equation of the chaotic system (2.1), 

there by obtaining a new 4-D system  

1 1 1

1 1 1 1 1

1 1 1

1 1

( )x a y x

y x z cy kw

z b x y

w my

 


   


  
   

      (2.2) 

 

where , , , ,a b c k m are constant parameters. It is easy to 

find the system (2.2) has no equilibrium points. But when 

a = 5, b = 5, c = 0, k = 1, m = 1, and the initial conditions 

are (5, -0.1, 1, 2), the system (2.1) is hyperchaotic and its 

attractor is shown. Then Fig. 2 shows actually 

hyperchaotic behavior as expected. In this case, the system 

(2.1) has two positive Lyapunov exponents 

1 0.1812   , 2 0.0389   

and the other two are  

3
0.0020   , 4 5.2181   . 

 

3．Adaptive reduced-order function projective  

   synchronization between system (2.2) and  

   Wang-Chen system  

 

In the following text, we will design reduced-order 

projective synchronization scheme between hyperchaotic 

DLE coexist with no equilibria and the 3-D chaotic 

Wang-Chen system coexist with one stable equilibrium. 

The projective subsystem which is constructed by the first 

three equations of hyperchaotic DLE. The response 3-D 

chaotic Wang-Chen system is [13] 

 

  

2 2 2

2

2 2 2

2 21 4 .

x y z

y x y

z x





 





 

             (3.1) 

 

Note that the system is chaotic when 0.006a  . System 

(3.1) also can display a chaotic attractor with one and only 

one stable equilibrium (see Fig 3). 

Now we give the response system 

 

2 2 2 1

2

2 2 2

2 2

2

3
1 4 ,

u

u

u

x y z

y x y

z x

 

 

  

 



 



          (3.2) 

 

where 
1

u , 
2

u  and 
3

u  are the controllers. 
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Define 1. Systems (2.2) and (3.1) are referred to as 

achieving reduced-order projective synchronization if and 

only if the three following equalities satisfy 

simultaneously: 

 

1 2 1( ) ( ) - ( ) 0,lim lim
t t

e t x t n x t
 

    

2 2 1( ) ( ) - ( ) 0,lim lim
t t

ye t t n y t
 

    

3 2 1( ) ( ) - ( ) 0,lim lim
t t

ze t t n z t
 

    

 

where the error signals 

 

1 2 1( ) ( ) - ( ),e t x t n x t  2 2 1( ) ( ) - ( )e t y t n y t 
,
 

3 2 1( ) ( ) - ( ).e t z t n z t   

 

 

 

Fig. 1. Coexistence of chaotic attractors and two stable 

equilibria of the system (2.1) for the case 

( , , ) (10,100,11.2)a b c    with initial conditions (0.001,  

                 0.001, 0.001). 

 

By using system (3.2) and the error signals, the error 

dynamical system can be obtained as below: 

 

 

 

 

 

 

 

 

Fig. 2. Hyperchaotic attractors of the system (2.2) with 

no equilibria for the case ( , , , , )a b c k m   (5, 5, 0,1,1)

with initial conditions (5, -0.1, 1, 2) ： (a) attractor 

projected in 3-D space 1 1 1x y z  ; (b) attractor 

projected  in 3-D space 1 1 1x z w  ;  (c)  attractor  

          projected in 3-D space 1 1 1y z w  . 

 

 

1

2 2 1 2 1

( )
( ) ,x

de t
y z na y u

dt
     

22
12 2 1 1 1 2

( )
( ) ,x z cy k

de t
y n x w u

dt
    

   (3.3)
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3

2 1 1 3
1 4 (

( )
) .x n x y b

de t
u

dt
       

We define the controllers as follows 

1 2 2 1 1 1 1 1 1
( ) ,x eu y z na y p      

2

2 2 2 1 1 1 1 1 1 2 2
( ) ,x z c y k eu y n x w p       

3 2 1 1 1 3 3
1 4 ( ) .x n x y bu p e      

Here
3

p ,
2

p  and
3

p  are positive constants representing 

control gain. Then the following estimates of parameters 

update laws are set: 

1

1 1 1

( )
( ),x

da t
ne y

dt
   

1

3

( )
,

db t
ne

dt
 1

2 1

( )
,

dc t
ne y

dt
  

1

2 1

( )
,

dk t
ne w

dt
 

1

1
.

( )d t

dt
e


  

Therefore, the reduced-order projective synchronization 

between the two systems (2. 2) and (3.2) will must satisfy  

 

1- ( ) 0,lim
t

a a t


 1- ( ) 0,lim
t

b b t


 1- ( ) 0,lim
t

c c t


  

1- ( ) 0,lim
t

k k t


 1- ( ) 0.lim
t

t 


  

 

Hence, let us define the following Lyapunov function 

candidate 

2 2 2 2 2 2 2 2

1 2 3 1 1 1 1 1

1

2
),(e e e a b c kV          

and we obtain 

.
2 2 2

1 1 2 2 3 3p
dV

e p e p e
dt

    

This means that the above designed reduced-order 

projective synchronization scheme can be achieved. In 

order to demonstrate the validity of the above designed 

reduced-order projective synchronization scheme. The 

parameters of the system (2.2) are set to ( , , , , )a b c k m   

(5, 5, 0,1,1) , and the parameter of the system (3.1) is set 

to 0.006a  . The initial conditions of the driving and 

response systems are (5, -0.1, 1, 2) and (1, 12, -2). 

Choosing 1ip  (i=1, 2, 3…, 7) and the initial values 

of the parameters ie (i=1, 2, 3), 1 1 1 1, , ,a b c k  and 1  are 

all set to zero. Fig. 4(a) shows the trajectories of ie (i=1, 2, 

3), and as indicated, the error dynamical system tended to 

zero after control. Fig. 4(b) shows that the estimates

1 1 1 1, , ,a b c k  and 1 of the unknown parameters converge 

to 1 1 1 1, , ,a b c k  and 1 as t  . 

 

Fig. 3. Coexistence of chaotic attractors and only one 

stable  equilibrium  of  the system (3.1)  for the case       

        a=0.006 with initial conditions (1, 12, -2). 

 

4. Circuit implement of the hyperchaotic 

   attractor 

 

In this section, a physical electronic experimental 

circuit is designed to realize the new hyperchaotic system. 

During the design procedure, we choose the value of 

parameters a = 5, b = 5, c = 0, k = 1, m = 1, and the initial 

conditions are (5, -0.1, 1, 2) for designing and 

implementing the system that displays two-scroll 

hyperchaotic attractor, as shown in Section 2. 

The designed circuitry is shown in Fig. 5. In fact, the 

strong random property is also demonstrated by this circuit 

implementation. When system (2.2) has no equilibria, the 

simple electronic circuit is designed that can be used to 

study hyperchaotic phenomena. The circuit employs 

simple electronic elements such as resistors, and 

operational amplifiers, and is easy to construct. The circuit 

employs simple electronic elements such as resistors, and 

is easy to construct. 

The used circuit equations in terms of the circuit 

parameters are shown as followings, 

 

 

 

 

 (4.1) 

 

 

 

2 1 1 1

54 2 2

76 3 3

13 4

1 1

1 1

1

1 .

x y x
R C R C

y xz w
R C R C

Vp
z xy

R C R C

w y
R C

 

  

  

 










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Fig. 4. (a) The behavior of the trajectories ie (i=1,2,3) of 

the error system (3.3); (b) the estimates 1 1 1 1, , ,a b c k  

and 1  of the unknown parameters converge to 5,5,0,1  

                and 0.006as t  . 

 

 

The circuit element values as follow, R1 = R2=8kΩ， 

R4 = R7 = 4kΩ,R5 =R13 = 40kΩ, R6 = 150kΩ,R9 = R10 

= R11 = R12 = R14 = R15 =20kΩ,

Vn= 15V, Vp = +15V . To obtain the stable phase 

portrait in the oscilloscope, we select the capacitor C1 

=C2= C3 =C4= 10nF, which only increases the vibration 

frequency of the chaotic circuit. 

The Orcad-PSpice simulation results and oscilloscope 

outputs of circuitry of the new hyperchaotic system are 

seen in between Fig. 6 and Fig. 11. 

 

 

5. Conclusion 

 

In this paper, chaos synchronization between the 

hyperchaotic system with no equilibria and the chaotic 

system only with one stable equilibrium by using the 

adaptive control technique. In addition, the generator of 

the new hyperchaotic system is confirmed through a novel 

electronic circuit design. A good qualitative agreement is 

illustrated between the simulation results and real 

oscilloscope outputs. It is convenient to use the new 

system to purposefully generate hyperchaos in chaos 

applications. We believe that the unknown dynamical 

behaviors of the strange hyperchaotic attractors deserve 

further investigation and are very desirable for engineering 

applications such as secure communications in the near 

future. 

 

 

Fig. 5. The designed electronic circuit schematic of the new 

hyperchaotic system(2.2). 

 

 

 

 

Fig. 6. x-y phase portrait results of the electronic circuit 

of the new hyperchaotic system obtained from 

Orcad-PSpice and the oscilloscope screen respectively. 
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Fig. 7. x-z phase portrait results of the electronic circuit 

of the new hyperchaotic system obtained from 

Orcad-PSpice and the oscilloscope screen respectively. 

 

 

 

Fig. 8. y-z phase portrait results of the electronic circuit 

of the new hyperchaotic system obtained from 

Orcad-PSpice and the oscilloscope screen respectively. 

 

 

 

Fig. 9. x-w phase portrait results of the electronic circuit 

of the new hyperchaotic system obtained from 

Orcad-PSpice and the oscilloscope screen respectively. 

 

 

Fig. 10. y-w phase portrait results of the electronic 

circuit of the new hyperchaotic system obtained from 

Orcad-PSpice and the oscilloscope screen respectively. 

 

 

 

Fig. 11. y-w phase portrait results of the electronic 

circuit of the new hyperchaotic system obtained from 

Orcad-PSpice and the oscilloscope screen respectively. 
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